
NOTE Communicated by Yair Weiss

A Binary Variable Model for Affinity Propagation

Inmar E. Givoni
inmar@psi.toronto.edu
Brendan J. Frey
frey@psi.toronto.edu
Probabilistic and Statistical Inference Group, Departments of Electrical and
Computer Engineering and Computer Science, University of Toronto, Toronto,
Ontario M5S 3G4, Canada

Affinity propagation (AP) was recently introduced as an unsupervised
learning algorithm for exemplar-based clustering. We present a deriva-
tion of AP that is much simpler than the original one and is based on a
quite different graphical model. The new model allows easy derivations
of message updates for extensions and modifications of the standard AP
algorithm. We demonstrate this by adjusting the new AP model to repre-
sent the capacitated clustering problem. For those wishing to investigate
or extend the graphical model of the AP algorithm, we suggest using
this new formulation since it allows a simpler and more intuitive model
manipulation.

1 Introduction

Affinity propagation (Frey & Dueck, 2007) is a clustering algorithm that,
given a set of similarities between pairs of data points, exchanges messages
between data points so as to find a subset of exemplar points that best
describe the data. AP associates each data point with one exemplar, resulting
in a partitioning of the whole data set into clusters. The goal of AP is to
minimize the overall sum of similarities between data points and their
exemplars.

AP was originally derived as an instance of the max-product (belief-
propagation) algorithm in a loopy factor graph (Kschischang, Frey, &
Loeliger, 2001; Pearl, 1988). The simple scalar messages updates for affinity
propagation were obtained by Frey and Dueck (2007) only after cumber-
some manipulations of the standard max-product message updates that
reduced N-ary messages to binary ones. Any modifications to the algo-
rithm, such as introducing useful additional constraints via function nodes
or modifying the functional form of the factors, require rederiving the mes-
sage update subject to these modifications. Obtaining the simplified mes-
sages entails further manipulations of the update equations.

Neural Computation 21, 1589–1600 (2009) C© 2009 Massachusetts Institute of Technology

1590 I. Givoni and B. Frey

NS1jS111S

1iS

1NS

ijS

NjS

iNS

NNS

1I

iI

NI

NEjE1E

Nc1jc111c

1ic

1Nc

ijc

Njc

iNc

NNc

a

ijS

ijc iI

jE

ij

ij

ij ij

s(i, j)

b

Figure 1: A binary variable model for affinity propagation.

We describe an alternative yet equivalent formulation for the AP fac-
tor graph, which allows simpler derivations of the AP message updates.
Further, in our experience, this model simplifies message derivation for
modifications to the AP model. We demonstrate the ease of use of the new
model by showing how AP can be easily extended to solve a capacitated
clustering problem (Mulvey & Beck, 1984) where each cluster has an upper
limit L on the number of points it can contain.

2 A Binary Model for Affinity Propagation

Let {ci j }N
j=1 be N binary variables associated with data point i (i ∈ {1, . . . , N}),

such that ci j = 1 iff the exemplar for point i is point j . In this notation,
c j j = 1 indicates that j is an exemplar. All assignments to exemplars and
all exemplar choices can be described by the set of N2 binary variables {ci j }
i, j ∈ {1, . . . , N}.

Each data point in affinity propagation clustering is assigned to a single
exemplar. Therefore, the first constraint that must be accounted for in the
binary variable formulation is that

∑N
j=1 ci j = 1. We refer to this as the 1-

of-N constraint. An additional constraint from the original AP formulation
is the exemplar consistency constraint stating that node i may choose j
as its exemplar only if j chose itself as an exemplar. Figure 1a shows a
factor graph for affinity propagation that uses the above variables and
constraints. The 1-of-N constraints are introduced via the I function nodes;
in every row i of the grid, exactly one ci j , j ∈ {1, . . . , N}, variable must be
set to 1. The E function nodes enforce the exemplar consistency constraints;
in every column j , the set of ci j , i ∈ {1, . . . , N}, variables set to 1 indicates
all the points that have chosen point j as their exemplar. For these points
to be able to choose point j as an exemplar, j must also choose itself as an
exemplar (c j j must also equal 1).

A Binary Variable Model for Affinity Propagation 1591

Since we intend to use the max-sum (log-domain max-product) formu-
lation, where local functions are added to form the global objective function
to maximize, the I and E functions can be naturally defined as follows:

Ii (ci1, . . . , ci N) =



−∞ if
∑

j

ci j �= 1,

0 otherwise.
(2.1)

E j (c1 j , . . . , cNj) =
{−∞ if c j j = 0 and ∃i �= j s.t. ci j = 1,

0 otherwise.
(2.2)

The Si j function nodes incorporate the user-defined input similarities
s(i, j) between data points and their potential exemplars:

Si j (ci j) =
{

s(i, j) if ci j = 1,

0 otherwise.
(2.3)

The graphical model in Figure 1a, together with equations 2.1 to 2.3,
result in the following max-sum objective function:

S(c11, . . . , cNN)=
∑
i, j

Si j (ci j)+
∑

i

Ii (ci1, . . . , ci N)+
∑

j

E j (c1 j , . . . , cNj).

There are five message types passed between variable nodes and func-
tion nodes when executing the max-sum algorithm on the graph. They
are annotated in Figure 1b. Since each ci j variable is binary, it may appear
we need to send two-valued messages between nodes. In practice, for any
message, we need to propagate only the difference between the message
values for its two possible settings. The original two-valued message can
be recovered from this scalar up to an additive constant, which is not im-
portant because adding a constant to all values of a message does not alter
the output of the algorithm. We can also think of these scalar messages as
pseudo-log-likelihood ratios. When the algorithm terminates, we recover
the estimated MAP settings for any hidden variable by adding all of its
incoming messages together. To make decisions, hidden variables corre-
sponding to positive merged messages are set to one, and all the others are
set to zero.

We now derive the scalar message updates in the binary variable AP
model. Recall the max-sum message update rules (Bishop, 2006):

µx→ f (x) =
∑

{l| fl∈ne(x)\ f }
µ fl→x(x), (2.4)

1592 I. Givoni and B. Frey

µ f →x(x) = max
x1,...,xM


 f (x, x1, . . . , xm) +

∑
{m|xm∈ne(f)\x}

µxm→ f (xm)


 , (2.5)

where the notation ne(x)\ f is used to indicate the set of variable node x’s
neighbors excluding function node f , and ne(f)\x is used to indicate the
set of function node f ’s neighbors excluding variable node x.

We denote by βi j (m) the message value for setting the hidden variable
ci j to m, m ∈ {0, 1}:

βi j (m) = µci j →Ii (m).

The scalar message difference βi j (1) − βi j (0) is denoted by βi j . Similar
notation is used for α, ρ, and η. In what follows, for each message we
calculate its value for each setting of the binary variable and then take the
difference. Note that the scalar message sent from the Si j function is always
the similarity between i and j since Si j (1) − Si j (0) = s(i, j).

We begin by calculating the messages sent from the variable nodes to
the function nodes, using equation 2.4. The message sent from a ci j variable
node to its Ii function node is simply the sum of all incoming messages to
the ci j variable node, except for the message arriving from the Ii node itself.
These incoming messages are the Si j and αi j messages.

For ci j = 1:

βi j (1) =µci j →Ii (1) =
∑

{l| fl∈ne(ci j)\Ii }
µ fl→ci j (1)

= Si j (1) + αi j (1). (2.6)

Similarly, for ci j = 0:

βi j (0) = Si j (0) + αi j (0). (2.7)

Taking the difference between βi j (1) and βi j (0), we obtain:

βi j =βi j (1) − βi j (0)

= (Si j (1) − Si j (0)) + (αi j (1) − αi j (0))

= s(i, j) + αi j . (2.8)

Using a similar set of equations, we obtain the ρi j messages that are sent
to the E j function nodes. These can be expressed as the sum of all incoming
messages to the ci j variable node, except for the message arriving from the

A Binary Variable Model for Affinity Propagation 1593

E j node:

ρi j (1) = Si j (1) + ηi j (1)

ρi j (0) = Si j (0) + ηi j (0)

ρi j = ρi j (1) − ρi j (0) = s(i, j) + ηi j . (2.9)

We now turn our attention to the messages sent from the function nodes
to the variable nodes, which are calculated using equation 2.5. When cal-
culating a ηi j message sent from function node Ii to the ci j variable node,
we fix the value of ci j to 1 or 0, and we find an optimal assignment of the
hidden variables cik , k �= j . Any assignment that violates the Ii function
1-of-N constraint results in that function evaluating to −∞, and such an
assignment is trivially nonoptimal.

When ci j = 1, we get:

ηi j (1) = µIi →ci j (1)

= max
cik ,k �= j


Ii (ci1, . . . , ci j = 1, . . . , ci N) +

∑
{t|cit∈ne(Ii)\ci j }

µcit→Ii (cit)




= max
cik ,k �= j


Ii (ci1, . . . , ci j = 1, . . . , ci N) +

∑
t �= j

βi t(cit)




=
∑
t �= j

βi t(0). (2.10)

The final equality holds since ci j = 1 indicates point i has chosen point
j as its exemplar, and therefore no other point can be i ’s exemplar. Con-
sequently, the only assignment of the cik , k �= j variables that satisfies the
1-of-N constraint is setting them all to zero. Being the only satisfying assign-
ment, it is also the optimal one, and the Ii function evaluates to its maximal
value of 0.

When ci j = 0, we get:

ηi j (0) = max
cik ,k �= j


Ii (ci1, . . . , ci j = 0, . . . , ci N) +

∑
t �= j

βi t(cit)




= max
k �= j


βik(1) +

∑
t /∈{k, j}

βi t(0)


 . (2.11)

1594 I. Givoni and B. Frey

In the above, when ci j is set to 0, there is more flexibility in choosing an
optimal solution. Still, exactly one of the cik , k �= j variables must be set to
one, resulting in a maximization over N − 1 possible solutions.

Taking the difference between equations 2.10 and 2.11, we get

ηi j = ηi j (1) − ηi j (0)

= − max
k �= j


βik(1) +

∑
t /∈{k, j}

βi t(0) −
∑
t �= j

βi t(0)




= − max
k �= j

[βik(1) − βik(0)] = − max
k �= j

βik . (2.12)

We turn to the αi j messages, where we must distinguish between the
cases i = j and i �= j , and we first describe the case i = j . Setting c j j = 1
(j has chosen itself as an exemplar) is enough to guarantee that any setting
of the other variables ck j , k �= j will be valid (the other points can choose
j as an exemplar, or not), and the maximum can be taken over all the
configurations with the exemplar consistency constraint trivially satisfied.
When c j j = 0 (j is not an exemplar), the only valid configuration satisfying
the exemplar consistency constraint is for all the other variables ck j , k �= j
to also equal 0 (none of them has chosen j as an exemplar). The message
updates for these two setting are therefore

α j j (1) =
∑
k �= j

max
ck j

ρk j (ck j) (2.13)

and

α j j (0) =
∑
k �= j

ρk j (0). (2.14)

The difference between equations 2.13 and 2.14 is

α j j =
∑
k �= j

max[ρk j , 0]. (2.15)

If i �= j , for ci j = 1 we get

αi j (1) = max
ck j ,k �=i


E j (c1 j , . . . , ci j = 1, . . . , cNj) +

∑
t �=i

ρt j (ctj)




= ρ j j (1) +
∑

k /∈{i, j}
max

ck j
ρk j (ck j). (2.16)

The above follows because when ci j = 1 (i has chosen j as its exemplar),
the only valid configuration for c j j is to equal 1 as well (j has chosen itself

A Binary Variable Model for Affinity Propagation 1595

as an exemplar) due to the exemplar consistency constraint. Once ci j and c j j

are set to 1, the configuration of the other hidden variables ck j , k /∈ {i, j} is
unconstrained (they can choose j as an exemplar or not) and the maximum
is taken over all other configurations.

For ci j = 0, we get

αi j (0) = max


ρ j j (1) +

∑
k /∈{i, j}

max
ck j

ρk j (ck j),
∑
k �=i

ρk j (0)


 . (2.17)

In the above case, there are two distinct types of valid configurations,
depending on whether c j j is set to 0 or to 1, and the optimal configuration
is therefore the maximization over these two settings. If c j j = 1 (j has
chosen itself as an exemplar), the configuration of the other hidden variables
ck j , k /∈ {i, j} is unconstrained, and the maximum is taken over all other
configurations. Alternatively, if c j j = 0 (j is not an exemplar), all other ck j ,
k �= i variables must also be 0 (no other point may choose j as an exemplar).

Taking the difference between equations 2.16 and 2.17 gives

αi j = min


0, ρ j j (1) +

∑
k /∈{i, j}

max
ck j

ρk j (ck j) −
∑
k �=i

ρk j (0)




= min


0, ρ j j +

∑
k /∈{i, j}

max[ρk j , 0]


 , (2.18)

where we have used the fact that x − max[x, y] = min[0, x − y] and
max[x, y] − y = max[x − y, 0].

To summarize, the message update equations are:

βi j = s(i, j) + αi j ηi j = − max
k �= j

βik

ρi j = s(i, j) + ηi j

αi j =




∑
k �= j

max[ρk j , 0] i = j

min


0, ρ j j +

∑
k /∈{i, j}

max[ρk j , 0]


 i �= j

.

Note that we can express ρ directly in terms of α:

ρi j = s(i, j) + ηi j

= s(i, j) − max
k �= j

βik

= s(i, j) − max
k �= j

(
s(i, k) + αik

)
. (2.19)

1596 I. Givoni and B. Frey

The αi j messages are identical to the AP availability messages a (i, j),
and the ρi j messages are identical to the AP responsibility messages r (i, j).
Thus, we have recovered the original affinity propagation updates.

3 Deriving Message Updates for Capacitated Affinity Propagation

In order to demonstrate the usefulness of the new derivation, we augmented
the standard AP model with the constraint that each cluster has an upper
limit L on the number of points it can contain. We denote this variant of AP
as capacitated AP (CAP). This model can be used to solve a special case of
the NP-hard problem known as the capacitated clustering problem (CCP);
(Mulvey & Beck, 1984), where L is an integer, and the demands, or weights
of the points, are equal and fixed to 1.

The graphical model representing CAP is the same as the one in Figure 1a,
where the only modification is in the definition of the E j function nodes that
now have an additional setting for which the function takes on a −∞ value:

E j (c1 j , . . . , cNj)

=




−∞ if (c j j = 0 and ∃i �= j s.t. ci j = 1) or

(∑
i

ci j > L

)
,

0 otherwise.

(3.1)

Deriving the new message updates requires rederiving equations 2.13 to
2.18. As before, when calculating the message sent to variable node ci j from
function node E j , we fix the value of ci j to either 0 or 1, and we find the
configuration of the hidden variables ck j , k �= i that maximizes the function
node value plus the sum of all incoming messages to the function node
E j , except the message sent from the variable node ci j (i.e., we compute
maxck j ,k �=i [E j (c1 j , . . . , ci j = m, . . . , cNj) + ∑

k �=i ρk j (ck j)]).
Therefore, given the new limit L on the number of points that can be

assigned to an exemplar, the only difference in the logic used to derive the
updates for equations 2.13 to 2.18 is with regard to the elements over which
the max operation is taken in equations 2.13 and 2.16. In equation 2.13, we
maximize over all k �= j ; hence, we maximize over N − 1 messages. When
taking into account the limit L , we need to maximize only over the L − 1
largest messages since the N − (L − 1) variables corresponding to the rest
of the messages must be set to 0 in order to satisfy the capacity constraint.
Similarly, in equation 2.16, we maximize over all k /∈ {i, j}, hence over N − 2
messages, while in the new update, we need to maximize only over the L − 2
largest messages.

Let L j be the set of the L − 1 largest ρk j messages sent from variable
nodes ck j to function node E j , where k �= j . Similarly, let Li j be the set of

A Binary Variable Model for Affinity Propagation 1597

L − 2 largest ρk j messages, where k /∈ {i, j}. The new update messages are:

αi j =




∑
L j

max[ρk j , 0] i = j

min
[

0, ρ j j +
∑
Li j

max[ρk j , 0]
]

i �= j
,

where all other messages remain the same.
Since the sets L j and Li j do not need to be sorted, we can retain the O(N)

run time of calculating each αi j message by using an optimized algorithm
based on quicksort (Cormen, Leiserson, Rivest, & Stein, 2001).

We note that in order to derive the CAP message updates using the
original N-ary variable model (Frey & Dueck, 2007), we would need to
propagate the changes through the process of reducing N-ary messages to
binary ones.1 Without good familiarity with the reduction process, it may
not even be immediately clear that a given modification to the model can
still result in scalar messages. The binary model introduced here greatly
simplifies the process of deriving the message updates.

Extending the CAP algorithm to the case where each potential exemplar
j is associated with a different limit L j is trivial and only requires selecting
the appropriate largest L j − 1 and L j − 2 messages for each particular j .
Furthermore, the general capacitated clustering problem with unrestricted
demands and noninteger L j ’s can also be represented by the same model
with a slightly different E j function. The solution, however, relies on solv-
ing a knapsack problem as an intermediate step. Since AP can be easily
transformed to represent the facility location problem (Dueck et al., 2008),
the CAP formulation can also be transformed to give an algorithm for solv-
ing the well-known capacitated facility location problem (Sridharan, 1995).
Finally, the hard limit on L used here can be replaced with a cost that in-
creases as cluster size increases. A particular choice of this cost function
that stems from an underlying Dirichlet process prior was used in Tarlow,
Zemel, and Frey (2008).

4 Experimental Validation

We compare the CAP algorithm to capacitated k-medoids (CKM)—a variant
of k-medoids (KM; Bishop, 2006) that was adapted to greedily account for
the cluster size limit.2 The measure we use to compare the algorithms is the

1See supporting online material for Frey and Dueck (2007), equations S2a to S8, at
http://www.sciencemag.org/cgi/content/full/1136800/DC1.

2We iterate between assigning as the exemplar of each cluster the point that has the
maximal similarity to all other points in that cluster and reassigning all nonexemplar
points to exemplars greedily (from largest to smallest similarity) while making sure the
limit constraint for each exemplar is satisfied, until convergence.

1598 I. Givoni and B. Frey

20
–45

–40

–35

–30

–25

–20

–15

–10

40 60 80 100 120 140
Number of clusters k

S
u
m

 o
f
si

m
ila

ri
tie

s

CAP
capacitated k–medoids

Figure 2: A comparison of CAP and capacitated k-medoids as measured in
terms of sum of similarities of points to their exemplars.

total similarity: the sum of similarities between all nonexemplar points
to their exemplar. We generated 100 different sets of 2D points sampled
from a uniform distribution, where each set size is N = 500. The similarity
measure used is the negative Euclidean distance. In order to make sure
we chose a difficult capacity limit L (one that is not trivially satisfied by a
standard clustering algorithm), we used the following procedure. For each
data set, we first ran regular AP with a range of preferences to obtain a
range of different k values (recall that AP does not take as input a number
k of clusters to output; the number of clusters is controlled by a tunable
preference parameter). Then we ran standard KM for every obtained value
of k. For each k value, we compared the total similarity obtained by AP to
that of KM and chose the largest cluster size L̂ of the method with the better
total similarity. We decreased L̂ by one to obtain L , a cap size that is not
trivially satisfied by either KM or AP.

We ran CAP with the same preferences given to AP and ran CKM with
the corresponding k value of each preference. We ran CKM with 1000 dif-
ferent random restarts, of which the best run was taken. The average total
similarity of CAP was −24.35, while that of the CKM was −27.21. In all 730
experiments, CAP outperformed CKM. Figure 2 shows the breakdown of
experimental results according to the number of clusters k.

A Binary Variable Model for Affinity Propagation 1599

5 Conclusion

We introduced an alternative derivation of the AP algorithm, stemming
from an alternative, yet equivalent, graphical model. We believe this for-
mulation will allow simpler derivation of extensions to the original model
as was demonstrated in this work for the capacitated clustering problem.

Appendix: Implementation Details

Here we provide a more detailed description of the algorithm and exper-
imental procedure. We adopted the convergence criteria used in Tarlow
et al. (2008) with a damping factor of 0.95 and set the maximal number of
iterations to 5000. Once the algorithm terminates, we use the solution as
a starting point for the CKM algorithm. If its output outperforms that of
CAP or if the solution of CAP was not valid, we use the CKM solution. The
reason is that when CAP does not converge, we found that it oscillates in
regions of the solution space that have high objective function values. The
results obtained by the simple postprocessing step we take here serve to
ensure a valid solution, which, as we find in section 4, outperforms multiple
random restarts of CKM.

We use the same method for deciding on the final exemplar set J as used
by regular AP (Frey & Dueck, 2007). But for determining the assignment of
every point i /∈ J to its appropriate exemplar, we compute arg max j∈J (αi j +
ρi j).

Our initial data comprise 100 different data sets, and for each data set,
we run the comparison for 10 different values of k based on the results
obtained by running regular AP (see section 4). However, in 27% of the
runs (270 out of 1000), the solution found by CAP has more than k clusters.
We do not include these experiments in the comparison, since although
they are valid solutions, we wanted to be able to compare results across the
different algorithms operating in the same regime.

The average and median run times of CAP are 140.1 and 53.7 seconds
per run, respectively, while those of CKM were 281.2 and 198.9 seconds
per run, respectively (a complete CKM run consists of 1000 reruns with
different random starting points). The code was implemented in Matlab
and run on a Linux-based machine with 12 GB of RAM and two dual-core
AMD Opteron 2220 CPUs running at 2.8 GHz.

References

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

algorithms (2nd ed.). Cambridge, MA: MIT Press.

1600 I. Givoni and B. Frey

Dueck, D., Frey, B. J., Jojic, N., Jojic, V., Giaever, G., Emili, A., et al. (2008). Constructing
treatment portfolios using affinity propagation. In M. Vingron & L. Wong (Eds.),
Recomb (Vol. 4955, pp. 360–371). Berlin: Springer.

Frey, B., & Dueck, D. (2007). Clustering by passing messages between data points.
Science, 305(5814), 972–976.

Kschischang, F., Frey, B., & Loeliger, H.-A. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.

Mulvey, J. M., & Beck, M. P. (1984). Solving capacitated clustering problems. European
Journal of Operational Research, 18(3), 339–348.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence. San Francisco: Morgan Kaufmann.

Sridharan, R. (1995). The capacitated plant location problem. European Journal of
Operational Research, 87, 203–213.

Tarlow, D., Zemel, R., & Frey, B. (2008). Flexible priors for exemplar-based clustering.
In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. N.p.:
AUAI Press.

Received May 13, 2008; accepted October 23, 2008.

